Invertible Autoencoder for domain adaptation

نویسندگان

  • Yunfei Teng
  • Anna Choromanska
  • Mariusz Bojarski
چکیده

The unsupervised image-to-image translation aims at finding a mapping between the source (A) and target (B) image domains, where in many applications aligned image pairs are not available at training. This is an ill-posed learning problem since it requires inferring the joint probability distribution from marginals. Joint learning of coupled mappings FAB : A → B and FBA : B → A is commonly used by the state-of-the-art methods, like CycleGAN (Zhu et al., 2017), to learn this translation by introducing cycle consistency requirement to the learning problem, i.e. FAB(FBA(B)) ≈ B and FBA(FAB(A)) ≈ A. Cycle consistency enforces the preservation of the mutual information between input and translated images. However, it does not explicitly enforce FBA to be an inverse operation to FAB. We propose a new deep architecture that we call invertible autoencoder (InvAuto) to explicitly enforce this relation. This is done by forcing an encoder to be an inverted version of the decoder, where corresponding layers perform opposite mappings and share parameters. The mappings are constrained to be orthonormal. The resulting architecture leads to the reduction of the number of trainable parameters (up to 2 times). We present image translation results on benchmark data sets and demonstrate state-of-the art performance of our approach. Finally, we test the proposed domain adaptation method on the task of road video conversion. We demonstrate that the videos converted with InvAuto have high quality and show that the NVIDIA neural-network-based end-toend learning system for autonomous driving, known as PilotNet, trained on real road videos performs well when tested on the converted ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autoencoder Based Domain Adaptation for Speaker Recognition Under Insufficient Channel Information

In real-life conditions, mismatch between development and test domain degrades speaker recognition performance. To solve the issue, many researchers explored domain adaptation approaches using matched in-domain dataset. However, adaptation would be not effective if the dataset is insufficient to estimate channel variability of the domain. In this paper, we explore the problem of performance deg...

متن کامل

Unsupervised Domain Adaptation for Word Sense Disambiguation using Stacked Denoising Autoencoder

In this paper, we propose an unsupervised domain adaptation for Word Sense Disambiguation (WSD) using Stacked Denoising Autoencoder (SdA). SdA is an unsupervised learning method of obtaining the abstract feature set of input data using Neural Network. The abstract feature set absorbs the difference of domains, and thus SdA can solve a problem of domain adaptation. However, SdA does not always c...

متن کامل

Spectral Bisection Tree Guided Deep Adaptive Exemplar Autoencoder for Unsupervised Domain Adaptation

Learning with limited labeled data is always a challenge in AI problems, and one of promising ways is transferring wellestablished source domain knowledge to the target domain, i.e., domain adaptation. In this paper, we extend the deep representation learning to domain adaptation scenario, and propose a novel deep model called “Deep Adaptive Exemplar AutoEncoder (DAE)”. Different from conventio...

متن کامل

Marginalized Denoising Autoencoder via Graph Regularization for Domain Adaptation

Domain adaptation, which aims to learn domain-invariant features for sentiment classification, has received increasing attention. The underlying rationality of domain adaptation is that the involved domains share some common latent factors. Recently neural network based on Stacked Denoising Auto-Encoders (SDA) and its marginalized version (mSDA) have shown promising results on learning domain-i...

متن کامل

Deep Nonlinear Feature Coding for Unsupervised Domain Adaptation

Deep feature learning has recently emerged with demonstrated effectiveness in domain adaptation. In this paper, we propose a Deep Nonlinear Feature Coding framework (DNFC) for unsupervised domain adaptation. DNFC builds on the marginalized stacked denoising autoencoder (mSDA) to extract rich deep features. We introduce two new elements to mSDA: domain divergence minimization by Maximum Mean Dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.06869  شماره 

صفحات  -

تاریخ انتشار 2018